Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.538
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731876

RESUMO

This study explores the impact of defecation frequency on the gut microbiome structure by analyzing fecal samples from individuals categorized by defecation frequency: infrequent (1-3 times/week, n = 4), mid-frequent (4-6 times/week, n = 7), and frequent (daily, n = 9). Utilizing 16S rRNA gene-based sequencing and LC-MS/MS metabolome profiling, significant differences in microbial diversity and community structures among the groups were observed. The infrequent group showed higher microbial diversity, with community structures significantly varying with defecation frequency, a pattern consistent across all sampling time points. The Ruminococcus genus was predominant in the infrequent group, but decreased with more frequent defecation, while the Bacteroides genus was more common in the frequent group, decreasing as defecation frequency lessened. The infrequent group demonstrated enriched biosynthesis genes for aromatic amino acids and branched-chain amino acids (BCAAs), in contrast to the frequent group, which had a higher prevalence of genes for BCAA catabolism. Metabolome analysis revealed higher levels of metabolites derived from aromatic amino acids and BCAA metabolism in the infrequent group, and lower levels of BCAA-derived metabolites in the frequent group, consistent with their predicted metagenomic functions. These findings underscore the importance of considering stool consistency/frequency in understanding the factors influencing the gut microbiome.


Assuntos
Defecação , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genética , Fezes/microbiologia , Masculino , Adulto , Feminino , Metaboloma , Biodiversidade , Aminoácidos de Cadeia Ramificada/metabolismo , Metabolômica/métodos , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bacteroides/genética , Metagenoma
2.
Front Immunol ; 15: 1385896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715606

RESUMO

Introduction: Peripartal cows are susceptible to a negative energy balance due to inadequate nutrient intake and high energy requirements for lactation. Improving the energy metabolism of perinatal dairy cows is crucial in increasing production in dairy cows. Methods: In this study, we investigated the impact of rumen-protected branched-chain amino acid (RPBCAA) on the production performance, energy and lipid metabolism, oxidative stress, and immune function of primiparous dairy cows using metabolomics through a single-factor experiment. Twenty healthy primiparous Holstein cows were selected based on body condition scores and expected calving date, and were randomly divided into RPBCAA (n = 10) and control (n = 10) groups. The control group received a basal diet from calving until 21 d in milk, and the RPBCAA group received the basal diet and 44.6 g/d RPLeu, 25.14 g/d RPIle, and 25.43 g/d RPVal. Results: In comparison to the control group, the supplementation of RPBCAA had no significant effect on milk yield and milk composition of the dairy cows. Supplementation with RPBCAA significantly increased the concentrations of insulin, insulin growth factor 1, glucagon, and growth hormones, which are indicators of energy metabolism in postpartum cows. The very low density lipoprotein, fatty acid synthase, acetyl coenzyme A carboxylase, and hormone-sensitive lipase contents of the RPBCAA group were significantly greater than that of the control group; these metrics are related to lipid metabolism. In addition, RPBCAA supplementation significantly increased serum glutathione peroxidase and immunoglobulin G concentrations and decreased malondialdehyde concentrations. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed 414 serum and 430 milk metabolic features. Supplementation with RPBCAA primarily increased concentrations of amino acid and lipid metabolism pathways and upregulated the abundance of serotonin, glutamine, and phosphatidylcholines. Discussion: In summary, adding RPBCAA to the daily ration can influence endocrine function and improve energy metabolism, regulate amino acid and lipid metabolism, mitigate oxidative stress and maintain immune function on primiparous cows in early lactation.


Assuntos
Aminoácidos de Cadeia Ramificada , Lactação , Metabolômica , Leite , Rúmen , Animais , Bovinos , Feminino , Aminoácidos de Cadeia Ramificada/metabolismo , Rúmen/metabolismo , Metabolômica/métodos , Leite/química , Leite/metabolismo , Metabolismo Energético , Gravidez , Suplementos Nutricionais , Ração Animal/análise , Paridade , Estresse Oxidativo , Metabolismo dos Lipídeos , Metaboloma
3.
Cell Metab ; 36(5): 891-892, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718756

RESUMO

Brown adipose tissue has long been functionally characterized as an organ that regulates thermogenesis, body weight set point, and glucose homeostasis. In the May 9, 2024, issue of Cell, Verkerke et al. discover a novel function for brown adipose tissue in processing branched-chain amino acids into antioxidant metabolites that enter the circulation and regulate insulin signaling in the liver.


Assuntos
Adipócitos Marrons , Adipócitos Marrons/metabolismo , Animais , Humanos , Tecido Adiposo Marrom/metabolismo , Termogênese , Aminoácidos de Cadeia Ramificada/metabolismo , Insulina/metabolismo , Transdução de Sinais , Fígado/metabolismo
4.
Nature ; 629(8010): 98-104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693411

RESUMO

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Assuntos
Aminoácidos , Biocatálise , Acoplamento Oxidativo , Processos Fotoquímicos , Aminoácidos/biossíntese , Aminoácidos/química , Aminoácidos/metabolismo , Biocatálise/efeitos da radiação , Evolução Molecular Direcionada , Radicais Livres/química , Radicais Livres/metabolismo , Glicina/química , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/química , Indicadores e Reagentes , Luz , Acoplamento Oxidativo/efeitos da radiação , Fosfato de Piridoxal/metabolismo , Estereoisomerismo , Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo
5.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683936

RESUMO

Effective identification and usage of genetic variation are prerequisites for developing nutrient-efficient cultivars. A collection of 94 safflower (Carthamus tinctorius ) genotypes (G) was investigated for important morphological and photosynthetic traits at four nitrogen (N) treatments. We found significant variation for all the studied traits except chlorophyll b (chl b ) among safflower genotypes, nitrogen treatments and G×N interaction. The examined traits showed a 2.82-50.00% increase in response to N application. Biological yield (BY) reflected a significantly positive correlation with fresh shoot weight (FSW), root length (RL), fresh root weight (FRW) and number of leaves (NOL), while a significantly positive correlation was also observed among carotenoids (C), chlorophyll a (chl a ), chl b and total chlorophyll content (CT) under all treatments. Superior genotypes with respect to plant height (PH), FSW, NOL, RL, FRW and BY were clustered into Group 3, while genotypes with better mean performance regarding chl a , chl b C and CT were clustered into Group 2 as observed in principal component analysis. The identified eight best-performing genotypes could be useful to develop improved nitrogen efficient cultivars. Genome-wide association analysis resulted in 32 marker-trait associations (MTAs) under four treatments. Markers namely DArT-45481731 , DArT-17812864 , DArT-15670279 and DArT-45482737 were found consistent. Protein-protein interaction networks of loci associated with MTAs were related to fatty acid and branched-chain amino acid metabolism and histone modifications.


Assuntos
Aminoácidos de Cadeia Ramificada , Carthamus tinctorius , Ácidos Graxos , Estudo de Associação Genômica Ampla , Nitrogênio , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Carthamus tinctorius/efeitos dos fármacos , Nitrogênio/metabolismo , Ácidos Graxos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Genótipo , Código das Histonas/efeitos dos fármacos , Clorofila/metabolismo , Loci Gênicos
6.
Mol Nutr Food Res ; 68(8): e2300720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581348

RESUMO

SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.


Assuntos
Aminoácidos de Cadeia Ramificada , Dieta Hiperlipídica , Obesidade , Psoríase , Transaminases , Animais , Masculino , Camundongos , Aminoácidos de Cadeia Ramificada/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Imiquimode , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-17/genética , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade/complicações , PPAR gama/metabolismo , PPAR gama/genética , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais , Pele/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transaminases/metabolismo
7.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653240

RESUMO

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Assuntos
Tecido Adiposo Marrom , Aminoácidos de Cadeia Ramificada , Resistência à Insulina , Mitocôndrias , Nitrogênio , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Camundongos , Nitrogênio/metabolismo , Mitocôndrias/metabolismo , Masculino , Humanos , Metabolismo Energético , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Insulina/metabolismo , Dieta Hiperlipídica , Adipócitos Marrons/metabolismo , Transdução de Sinais
8.
Cell Host Microbe ; 32(5): 661-675.e10, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657606

RESUMO

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.


Assuntos
Aminoácidos de Cadeia Ramificada , Aminoácidos , Microbioma Gastrointestinal , Homeostase , Triptofano , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Triptofano/metabolismo , Camundongos Endogâmicos C57BL , Nutrientes/metabolismo , Intestinos/microbiologia , Humanos , Metabolômica , Glucose/metabolismo , Serotonina/metabolismo , Vida Livre de Germes , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Masculino
9.
Dev Comp Immunol ; 156: 105183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636699

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is the most important virus that threatens sericulture industry. At present, there is no effective treatment for BmNPV infection in silkworms, and lncRNA plays an important role in biological immune response and host-virus interaction, but there are relatively few studies in silkworms. In this study, the four midgut tissue samples of the resistance strain NB (NB) and susceptible strain 306 (306) and the NB and 306 continuously infected with BmNPV for 96 h are used for whole transcriptome sequencing to analyze the differences in the genetic background of NB and 306 and the differences after inoculation of BmNPV, and the significantly different mRNA, miRNA and lnRNA between NB and 306 after BmNPV inoculation were screened. By comparing NB and 306, 2651 significantly different mRNAs, 57 significantly different miRNAs and 198 significantly different lncRNAs were screened. By comparing NB and 306 after BmNPV inoculation, 2684 significantly different mRNAs, 39 significantly different miRNAs and 125 significantly different lncRNAs were screened. According to the significantly different mRNA, miRNA and lncRNA screened from NB and 306 and NB and 306 after virus inoculation, the mRNA-miRNA-lncRNA regulatory network was constructed before and after virus inoculation, and the BmBCAT-Bomo_chr7_8305-MSTRG.3236.2 regulatory axis was screened from them, and it was found that BmBCAT was not Bomo_chr7_8305 regulated in the genetic background, after viral infection, MSTRG.3236.2 competes for binding Bomo_chr7_8305 regulates BmBCAT. The whole transcriptome sequencing results were verified by qPCR and the time-series expression analysis was performed to prove the reliability of the regulatory network. The BmBCAT-Bomo_chr7_8305-MSTRG.3236.2 regulatory axis may play a potential role in the interaction between silkworms and BmNPV. These results provide new insights into the interaction mechanism between silkworms and BmNPV.


Assuntos
Bombyx , MicroRNAs , Nucleopoliedrovírus , RNA Longo não Codificante , Transaminases , Bombyx/virologia , Bombyx/imunologia , Bombyx/genética , Animais , Nucleopoliedrovírus/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transaminases/metabolismo , Transaminases/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
10.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542473

RESUMO

The conversion of lignocellulosic and algal biomass by thermophilic bacteria has been an area of active investigation. Thermoanaerobacter species have proven to be particularly capable in the production of bioethanol and biohydrogen from lignocellulosic biomass, although detailed studies of their abilities to utilize the full gamut of carbohydrate, amino acids, and proteins encountered in biomass hydrolysates are seldom comprehensively examined. Here, we re-evaluate the ability of Thermoanaerobacter strain AK15, a highly ethanologenic strain previously isolated from a hot spring in Iceland. Similar to other Thermoanaerobacter species, the strain degraded a wide range of mono- and di-saccharides and produced a maximum of 1.57 mol ethanol per mol of glucose degraded at high liquid-gas phase ratios. The ability of strain AK15 to utilize amino acids in the presence of thiosulfate is limited to the branched-chain amino acids as well as serine and threonine. Similar to other Thermoanaerobacter species, strain AK15 produces a mixture of branched-chain fatty acids and alcohols, making the strain of interest as a potential source of longer-chain alcohols. Finally, the strain was also shown to use butyrate as an electron sink during glucose degradation resulting in the reduced product butanol, in addition to end-products produced from glucose. Thus, strain AK15 is a promising candidate for ethanol and higher-order alcohols from a range of lignocellulosic and algal biomass.


Assuntos
Aminoácidos , Alga Marinha , Aminoácidos/metabolismo , Alga Marinha/metabolismo , Etanol/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Glucose/metabolismo , Fermentação
11.
Sci Rep ; 14(1): 6309, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491066

RESUMO

This case-control study investigated the link between dietary branched-chain amino acids (BCAAs) and the risk and severity of rheumatoid arthritis (RA). We assessed dietary BCAA intake in 95 RA patients and 190 matched controls using a food frequency questionnaire. We also assessed the disease severity using the disease activity score 28 (DAS-28), ESR, VAS, morning stiffness, and tender and swollen joints. Higher BCAA intake, expressed as a percentage of total protein, was significantly associated with increased risk of RA for total BCAAs (OR 2.14, 95% CI 1.53-3.00, P < 0.001), leucine (OR 2.40, 95% CI 1.70-3.38, P < 0.001), isoleucine (OR 2.04, 95% CI 1.46-2.85, P < 0.001), and valine (OR 1.87, 95% CI 1.35-2.59, P < 0.001). These associations remained significant even after adjusting for potential confounders (P < 0.001). However, BCAA intake did not show any significant association with RA severity in either crude or multivariate models (P > 0.05). Our findings suggest that higher dietary BCAA intake may contribute to the development of RA, but further research is needed to confirm these observations and explore the underlying mechanisms.


Assuntos
Aminoácidos de Cadeia Ramificada , Artrite Reumatoide , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Fatores de Risco , Estudos de Casos e Controles , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/induzido quimicamente , Ingestão de Alimentos
12.
J Am Heart Assoc ; 13(7): e031617, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497460

RESUMO

Branched chain amino acids (BCAAs) are essential for protein homeostasis, energy balance, and signaling pathways. Changes in BCAA homeostasis have emerged as pivotal contributors in the pathophysiology of several cardiometabolic diseases, including type 2 diabetes, obesity, hypertension, atherosclerotic cardiovascular disease, and heart failure. In this review, we provide a detailed overview of BCAA metabolism, focus on molecular mechanisms linking disrupted BCAA homeostasis with cardiometabolic disease, summarize the evidence from observational and interventional studies investigating associations between circulating BCAAs and cardiometabolic disease, and offer valuable insights into the potential for BCAA manipulation as a novel therapeutic strategy for cardiometabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Hipertensão , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Obesidade
13.
Paediatr Anaesth ; 34(4): 366-370, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38314877

RESUMO

An 11-month-old female infant diagnosed with classic subtype IB maple syrup urine disease underwent living donor liver transplantation. Blood samples for plasma amino acid analysis were collected during the three phases of the operation. Despite the perioperative prophylactic administration of 12.5% hypertonic dextrose solution with insulin and a 20% intralipid emulsion, the blood levels of the branched-chain amino acids increased dramatically during surgery, consistent with an acute intraoperative metabolic decompensation. However, these blood levels normalized soon after liver transplantation with an excellent outcome. We suggest that the occurrence of an intraoperative metabolic crisis during liver transplantation is not necessarily a sign of graft failure.


Assuntos
Transplante de Fígado , Doença da Urina de Xarope de Bordo , Lactente , Criança , Humanos , Feminino , Aminoácidos de Cadeia Ramificada/metabolismo , Doença da Urina de Xarope de Bordo/metabolismo , Doença da Urina de Xarope de Bordo/cirurgia , Doadores Vivos
14.
J Am Heart Assoc ; 13(5): e032084, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420789

RESUMO

BACKGROUND: This study aimed to investigate the causal relationships between branched-chain amino acids (BCAAs) and the risks of hypertension via meta-analysis and Mendelian randomization analysis. METHODS AND RESULTS: A meta-analysis of 32 845 subjects was conducted to evaluate the relationships between BCAAs and hypertension. In Mendelian randomization analysis, independent single-nucleotide polymorphisms associated with BCAAs at the genome-wide significance level were selected as the instrumental variables. Meanwhile, the summary-level data for essential hypertension and secondary hypertension end points were obtained from the FinnGen study. As suggested by the meta-analysis results, elevated BCAA levels were associated with a higher risk of hypertension (isoleucine: summary odds ratio, 1.26 [95% CI, 1.08-1.47]; leucine: summary odds ratio, 1.28 [95% CI, 1.07-1.52]; valine: summary odds ratio, 1.32 [95% CI, 1.12-1.57]). Moreover, the inverse variance-weighted method demonstrated that an elevated circulating isoleucine level might be the causal risk factor for essential hypertension but not secondary hypertension (essential hypertension: odds ratio, 1.22 [95% CI, 1.12-1.34]; secondary hypertension: odds ratio, 0.96 [95% CI, 0.54-1.68]). CONCLUSIONS: The increased levels of 3 BCAAs positively correlated with an increased risk of hypertension. Particularly, elevated isoleucine level is a causal risk factor for essential hypertension. Increased levels of leucine and valine also tend to increase the risk of essential hypertension, but further verification is still warranted.


Assuntos
Aminoácidos de Cadeia Ramificada , Hipertensão , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Isoleucina/genética , Leucina , Análise da Randomização Mendeliana , Valina , Hipertensão/epidemiologia , Hipertensão/genética , Hipertensão/induzido quimicamente , Hipertensão Essencial , Estudo de Associação Genômica Ampla
15.
Sci Rep ; 14(1): 2651, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302683

RESUMO

Cardiovascular disease (CVD) represents one of the main causes of mortality worldwide and nearly a half of it is related to ischemic heart disease (IHD). The article represents a comprehensive study on the diagnostics of IHD through the targeted metabolomic profiling and machine learning techniques. A total of 112 subjects were enrolled in the study, consisting of 76 IHD patients and 36 non-CVD subjects. Metabolomic profiling was conducted, involving the quantitative analysis of 87 endogenous metabolites in plasma. A novel regression method of age-adjustment correction of metabolomics data was developed. We identified 36 significantly changed metabolites which included increased cystathionine and dimethylglycine and the decreased ADMA and arginine. Tryptophan catabolism pathways showed significant alterations with increased levels of serotonin, intermediates of the kynurenine pathway and decreased intermediates of indole pathway. Amino acid profiles indicated elevated branched-chain amino acids and increased amino acid ratios. Short-chain acylcarnitines were reduced, while long-chain acylcarnitines were elevated. Based on these metabolites data, machine learning algorithms: logistic regression, support vector machine, decision trees, random forest, and gradient boosting, were used for IHD diagnostic models. Random forest demonstrated the highest accuracy with an AUC of 0.98. The metabolites Norepinephrine; Xanthurenic acid; Anthranilic acid; Serotonin; C6-DC; C14-OH; C16; C16-OH; GSG; Phenylalanine and Methionine were found to be significant and may serve as a novel preliminary panel for IHD diagnostics. Further studies are needed to confirm these findings.


Assuntos
Doenças Cardiovasculares , Isquemia Miocárdica , Humanos , Serotonina , Aminoácidos , Metabolômica/métodos , Aminoácidos de Cadeia Ramificada/metabolismo , Isquemia Miocárdica/complicações , Doenças Cardiovasculares/etiologia
16.
Bioresour Technol ; 397: 130502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417463

RESUMO

Branched-chain amino acids (BCAAs) such as L-valine, L-leucine, and L-isoleucine are widely used in food and feed. To comply with sustainable development goals, commercial production of BCAAs has been completely replaced with microbial fermentation. However, the efficient production of BCAAs by microorganisms remains a serious challenge due to their staggered metabolic networks and cell growth. To overcome these difficulties, systemic metabolic engineering has emerged as an effective and feasible strategy for the biosynthesis of BCAA. This review firstly summarizes the research advances in the microbial synthesis of BCAAs and representative engineering strategies. Second, systematic methods, such as high-throughput screening, adaptive laboratory evolution, and omics analysis, can be used to analyses the synthesis of BCAAs at the whole-cell level and further improve the titer of target chemicals. Finally, new tools and engineering strategies that may increase the production output and development direction of the microbial production of BCAAs are discussed.


Assuntos
Aminoácidos de Cadeia Ramificada , Isoleucina , Aminoácidos de Cadeia Ramificada/metabolismo , Leucina/metabolismo , Valina , Engenharia Metabólica
17.
Phytomedicine ; 126: 155315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387274

RESUMO

OBJECTIVE: Metabolic-associated fatty liver disease (MAFLD) is the most prevalent liver disease, whereas type 2 diabetes mellitus (T2DM) is considered an independent risk factor for MAFLD incidence. Taohe Chengqi decoction (THCQ) is clinically prescribed for T2DM treatment; however, the hepatoprotective effect of THCQ against MAFLD is still unknown. This study intended to elucidate the therapeutic effect of THCQ on T2DM-associated MAFLD and to investigate the underlying mechanisms. METHODS: THCQ lyophilized powder was prepared and analyzed by UHPLC-MS/MS. A stable T2DM mouse model was established by high-fat diet (HFD) feeding combined with streptozotocin (STZ) injection. The T2DM mice were administered THCQ (2.5 g/kg or 5 g/kg) to explore the pharmacological effects of THCQ on T2DM-associated MAFLD. Liver tissue transcriptome was analyzed and the participatory roles of PPARα/γ pathways were verified both in vivo and in vitro. Serum metabolome analysis was used to explore the metabolome changes and skeletal muscle branched chain amino acid (BCAA) catabolic enzymes were further detected. Moreover, an AAV carrying BCKDHA shRNA was intramuscularly injected to verify the impact of THCQ on skeletal muscle BCAA catabolism and the potential therapeutic outcome on hepatic steatosis. RESULTS: THCQ improved hepatic steatosis in MAFLD. RNA-sequencing analysis showed dysregulation in the hepatic PPARγ-related fatty acid synthesis, while PPARα-dependent fatty acid oxidation was elevated following THCQ treatment. Interestingly, in vitro analyses of these findings showed that THCQ had minor effects on fatty acid oxidation and/or synthesis. The metabolomic study revealed that THCQ accelerated BCAA catabolism in the skeletal muscles, in which knockdown of the BCAA catabolic enzyme BCKDHA diminished the THCQ therapeutic effect on hepatic steatosis. CONCLUSION: This study highlighted the potential therapeutic effect of THCQ on hepatic steatosis in MALFD. THCQ upregulated fatty acid oxidation and reduced its synthesis via restoration of PPARα/γ pathways in HFD/STZ-induced T2DM mice, which is mediated through augmenting BCKDH activity and accelerating BCAA catabolism in the skeletal muscles. Overall, this study provided in-depth clues for "skeletal muscles-liver communication" in the therapeutic effect of THCQ against hepatic steatosis. These findings suggested THCQ might be a potential candidate against T2DM-associated MAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia , PPAR alfa , Espectrometria de Massas em Tandem , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Músculo Esquelético/metabolismo , Ácidos Graxos
18.
J Biol Chem ; 300(3): 105702, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301896

RESUMO

Elevated levels of branched chain amino acids (BCAAs) and branched-chain α-ketoacids are associated with cardiovascular and metabolic disease, but the molecular mechanisms underlying a putative causal relationship remain unclear. The branched-chain ketoacid dehydrogenase kinase (BCKDK) inhibitor BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid) is often used in preclinical models to increase BCAA oxidation and restore steady-state BCAA and branched-chain α-ketoacid levels. BT2 administration is protective in various rodent models of heart failure and metabolic disease, but confoundingly, targeted ablation of Bckdk in specific tissues does not reproduce the beneficial effects conferred by pharmacologic inhibition. Here, we demonstrate that BT2, a lipophilic weak acid, can act as a mitochondrial uncoupler. Measurements of oxygen consumption, mitochondrial membrane potential, and patch-clamp electrophysiology show that BT2 increases proton conductance across the mitochondrial inner membrane independently of its inhibitory effect on BCKDK. BT2 is roughly sixfold less potent than the prototypical uncoupler 2,4-dinitrophenol and phenocopies 2,4-dinitrophenol in lowering de novo lipogenesis and mitochondrial superoxide production. The data suggest that the therapeutic efficacy of BT2 may be attributable to the well-documented effects of mitochondrial uncoupling in alleviating cardiovascular and metabolic disease.


Assuntos
Lipogênese , Doenças Metabólicas , Membranas Mitocondriais , Inibidores de Proteínas Quinases , Espécies Reativas de Oxigênio , Humanos , 2,4-Dinitrofenol/farmacologia , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Lipogênese/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Ratos , Linhagem Celular , Membranas Mitocondriais/efeitos dos fármacos , Células Cultivadas
19.
Diabetes Obes Metab ; 26(5): 1706-1713, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38303102

RESUMO

AIM: To investigate the association of plasma metabolites with incident and prevalent chronic kidney disease (CKD) in people with type 2 diabetes and establish whether this association is causal. MATERIALS AND METHODS: The Hoorn Diabetes Care System cohort is a large prospective cohort consisting of individuals with type 2 diabetes from the northwest part of the Netherlands. In this cohort we assessed the association of baseline plasma levels of 172 metabolites with incident (Ntotal = 462/Ncase = 81) and prevalent (Ntotal = 1247/Ncase = 120) CKD using logistic regression. Additionally, replication in the UK Biobank, body mass index (BMI) mediation and causality of the association with Mendelian randomization was performed. RESULTS: Elevated levels of total and individual branched-chain amino acids (BCAAs)-valine, leucine and isoleucine-were associated with an increased risk of incident CKD, but with reduced odds of prevalent CKD, where BMI was identified as an effect modifier. The observed inverse effects were replicated in the UK Biobank. Mendelian randomization analysis did not provide evidence for a causal relationship between BCAAs and prevalent CKD. CONCLUSIONS: Our study shows the intricate relationship between plasma BCAA levels and CKD in individuals with type 2 diabetes. While an association exists, its manifestation varies based on disease status and BMI, with no definitive evidence supporting a causal link between BCAAs and prevalent CKD.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Fatores de Risco , Estudos Prospectivos , Aminoácidos de Cadeia Ramificada/efeitos adversos , Aminoácidos de Cadeia Ramificada/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente
20.
Nat Metab ; 6(4): 724-740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418585

RESUMO

Reproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Notably, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with vitamin B1, a cofactor needed for BCAA metabolism.


Assuntos
Envelhecimento , Aminoácidos de Cadeia Ramificada , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mitocôndrias , Oócitos , Reprodução , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Reprodução/fisiologia , Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Oócitos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA